
Department of Mechanical, Materials & Manufacturing Engineering 
MMME2053 – Mechanics of Solids 

 
 

  
1 

Mechanics of Solids – Elastic-Plastic Deformations Notes 

 

Learning Summary 

1. Know the shapes of uniaxial stress-strain curves and the elastic-perfectly-plastic approximation (knowledge); 

2. Know the kinematic and isotropic material behaviour models used to represent cyclic loading behaviour 
(knowledge); 

3. Understand elastic-plastic bending of beams (comprehension) and be able to use equilibrium, compatibility and 
𝜎-𝜀 behaviour to solve these types of problems for deformation and stress state (application); 

4. Understand elastic-plastic torsion of shafts (comprehension) and be able to use equilibrium, compatibility and 𝜏-
𝛾 behaviour to solve these types of problems for deformation and stress state (application); 

5. Be able to determine residual deformations and residual stresses in beams under bending and shafts under torsion 
(application). 

 

1. Introduction 

When materials are subjected to an increasing load (or stress), the strain response is often such that there is a linear 
(elastic) region in the stress-strain plot followed by a non-linear (plastic) region, as shown schematically in Figure 1. 
The ability to predict this material behaviour is extremely important, within many applications, in order to determine 
maximum allowable loads, that can be applied to components. These allowable loads are usually based on both the 
displacement this load causes as well as the remaining (residual) deformation upon unloading. 

 

 

Figure 1 

 

Several mathematical models can be used to estimate this material behaviour. 
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2. Elastic-Plastic Material Behaviour Models 

Elastic-perfectly-plastic (EPP) 

In this case, there is assumed to be no material hardening upon yield. I.e., once the yield stress, 𝜎!, is reached, further 
straining causes no further increase in stress, as shown in Figure 2.  

 

 

Figure 2 

 

Figure 2 shows an EPP stress-strain curve for a material in tension. However, this behaviour is also applicable in 
compression. I.e., if the loading is reversed, the behaviour shown in Figure 2 can be extended to that shown in Figure 
3, where it can be seen that the stress magnitude increases in compression until the compressive yield stress, −𝜎!, is 
reached, after which no further change to the stress response occurs with increasing compressive strain magnitude. 

 

 

Figure 3 

 

If the loading is then cycled between tension and compression, the material will continue to behave in the same way 
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(regardless of any previous plastic deformation) resulting in the hysteresis loop shown in Figure 4. 

 

 

Figure 4 

 

For EPP material behaviour, as loading conditions cause yielding (plasticity), there is no change to the yield surface, 
shown in Figure 5 (in blue for the von Mises yield criterion and in red for the Tresca yield criterion), in the principal 
stress-space.  

 

 

Figure 5 

 

EPP, is a good material model for mild steel, for example, which demonstrates moderate plasticity.  

 

Isotropic Hardening 

For materials which harden, as shown in tension, for both linear and non-linear cases, in Figure 2, this hardening 
behaviour can also be observed as changes to the yield surface. For the case of isotropic hardening behaviour, when 
the loading state, shown by the red arrow in Figure 6a, reaches the point of causing yielding (plasticity), i.e., point a, 
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the yield surface will begin to grow. Point a, the yield point, is also shown on the equivalent stress-strain curve in 
Figure 6c. As the loading state is further increased to point b, as shown in Figure 6b and 6c, the yield surface remains 
centred at the same position, but its radius grows in all directions by an amount governed by the magnitude of the 
loading. 

 

 

Figure 6 

 

If the loading is then reversed, as shown in Figure 7a, further plasticity (and therefore hardening) does not occur until 
the magnitude of the reserved loading is such that the edge of the increased yield surface, point c, is reached. This can 
also be represented on the equivalent stress-strain curve, as shown in Figure 7c. This position of compressive yield is 
at a larger load magnitude than if loaded in this direction originally. This is due to the growth of the yield surface 
(isotropic hardening) during the prior tensile loading. As the compressive load magnitude is further increased to point 
d, as shown in Figure 7b and 7c, the yield surface again remains centred at the same position, but its radius grows 
further in all directions by an amount governed by the magnitude of the loading. 
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Figure 7 

 

The blue loading curve shown in Figure 7c shows how the material would behave under a further tensile loading and 
shows that again, further plasticity (and therefore hardening) does not occur until the magnitude of the loading is such 
that the edge of the increased yield surface, point e, is reached. 

 

!!

!"!#
c

(a)

!!

!"!#

(b)

d

!!

"!

(c)

!$%

a

b

!$&

c

d

!$'

!$(

!$)

e

Δ*

Δ*

Δ+

Δ+



  
6 

Kinematic Hardening 

In the case of kinematic hardening behaviour, when the loading state reaches the point of causing yielding within the 
material, i.e., point a in Figure 8a, the yield surface begins moves in the direction of the loading. Point a, the yield 
point, is also shown on the equivalent stress-strain curve in Figure 8c. As the load is further increased to point b, shown 
in Figure 8b and 8c, the yield surface remains the same size (diameter of 2𝜎!") but moves in the direction of the loading 
by an amount governed by the magnitude of the loading.  

 

 

Figure 8 

 

If the loading is then reversed, as shown in Figure 9a, further plasticity (and therefore hardening) will occur at position 
c. This can also be represented on the equivalent stress-strain curve, as shown in Figure 9c. This position of 
compressive yield is now at a lower load magnitude than if loaded in this direction originally, due to the movement of 
the yield surface (kinematic hardening) during the prior tensile loading. As the compressive load magnitude is further 
increased to point d, as shown in Figure 9b and 9c, the yield surface remains the same size, but its centre again moves 
in the direction of the loading by an amount governed by the magnitude of the loading. 
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Figure 9 

 

The blue loading curve shown in Figure 9c shows how the material would behave under a further tensile loading and 
shows that again, further plasticity (and therefore hardening) occurs at a lower stress magnitude, point e, than in the 
previous tensile and compressive loadings, due to the movement of the yield surface (kinematic hardening) during the 
prior compressive loading. 

 

In the descriptions of isotropic and kinematic hardening above, the loading was chosen to be in the 1-direction, 
however, it is important to note that the applied loading could be in any direction, with the concepts described above 
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remaining valid. It should also be noted that in both cases, the von Mises yield criterion and non-linear hardening were 
chosen for demonstrative purposes, but the same concepts would apply in the case of the Tresca yield criterion and/or 
linear hardening, respectively. 

 

In reality, it is not common for materials to harden in a purely isotropic or kinematic manner, but rather a mixture of 
these. There are material behaviour models (e.g., the unified visco-plasticity model) which account for both isotropic 
and kinematic hardening. Also, whereas isotropic and kinematic hardening represent growth and movement of the 
yield surface, respectively, other material hardening models represent a change in the shape of the yield surface.  

 

In the following analyses related to the elastic-plastic deformation of components (e.g., beams in bending and torsion 
of shafts), only the EPP material behaviour model will be considered. 

 

3. Elastic-Plastic Bending of Beams 

Figure 10a shows a beam which is subjected to a bending moment, 𝑀. The rectangular cross-sectional area of the 
beam is shown in Figure 10b. 

 

 

Figure 10 

 

Assuming that the magnitude of the bending moment is not high enough to cause plasticity (yielding) within the beam, 
the elastic beam bending equation can be used to describe the stress distribution, as a function of 𝑦 (distance from 
the neutral axis), as: 

 𝜎 =
𝑀𝑦
𝐼

 (1) 

 

In this elastic case then, the stress distribution, as a function of 𝑦, throughout the cross-section, is linear, as shown in 
Figure 11. 
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Figure 11 

 

If the bending moment is increased to a magnitude which is just high enough to induce plasticity within the beam, this 
plasticity will occur at the positions furthest away from the neutral axis, i.e., at the positions of maximum 𝑦 magnitude 
(top and bottom edges of the cross-section). As the bending moment is further increased, the plasticity spreads from 
the outer edges, to further within the cross-section (towards the neutral axis) as shown in Figure 12. As can be seen 
from Figure 12, the material behaviour demonstrated is elastic perfectly-plastic, as once the material has yielded, at 
𝑦 > 𝑎 and 𝑦 < −𝑎, no further increase in stress magnitude is observed.  

 

 

Figure 12 

 

Moment equilibrium can be used to relate the applied bending moment, 𝑀, to the position as which yielding occurs, 
𝑎, as: 

 𝑀 = . 𝑦𝜎d𝐴
#

 (2) 

 

Equation (2) shows that the sum of the moments caused as a result of the stress, 𝜎, in each unit of area, d𝐴, in the 
cross-section, must be equal to the applied bending moment, 𝑀. This can be seen in the right-hand side of the above 
equation as stress, 𝜎, multiplied by area, 𝐴, gives force, 𝐹, and force multiplied by perpendicular distance, 𝑦, gives 
bending moment. I.e., for each unit of area, d𝐴: 

𝜎 × d𝐴 = dF 

and 

d𝐹 × 𝑦 = d𝑀 
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Equation (2) can be rewritten as: 

 𝑀 = . 𝑦𝜎𝑏d𝑦

$
%&

'$ %&

 (3) 

where 𝑏 and 𝑑 are the width (or breadth) and depth of the cross-section, respectively, as shown in Figure 10, and 
where: 

d𝐴 = 𝑏d𝑦 

 

Recognising the symmetry about the neutral axis in the stress distribution magnitudes, equation (3) can be rewritten 
as: 

𝑀 = 2. 𝑦𝜎𝑏d𝑦

$
%&

(

 

 

Substituting the expressions for stress for each of the elastic (0 > 𝑦 > 𝑎) and plastic (𝑎 > 𝑦 > 𝑑
27 ) regions, i.e., 𝜎!

)
*

 

and 𝜎!, respectively, into this gives: 

𝑀 = 2.𝑦 8𝜎!
𝑦
𝑎
9𝑏d𝑦

*

(

+ . 𝑦𝜎!𝑏d𝑦

$
%&

*

 

= 2𝑏𝜎! ;
𝑑%

8
−
𝑎%

6
> 

 

In order for the radius of curvature of the beam, 𝑅, due to the applied bending moment, 𝑀, to be calculated, both 
compatibility and a stress-strain relationship are required. As the region of the cross-section between −𝑎 < 𝑦 < 𝑎 
has only behaved elastically, the elastic beam bending equation can be applied. I.e.: 

𝑀
𝐼
=
𝜎
𝑦
=
𝐸
𝑅

 

∴
𝑦
𝑅
=
𝜎
𝐸
= 𝜀 

 ∴ 𝑅 =
𝑦
𝜀

 (4) 

where 𝜀 is the strain related to the stress 𝜎. 

 

As the beam behaves as one body, the entirety of the beam (both the elastic and plastic regions) must share this 
common radius of curvature, 𝑅. This is the compatibility requirement mentioned above.  
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Again, as the region of the cross-section between −𝑎 < 𝑦 < 𝑎 has only behaved elastically, Hooke’s law applies here, 
and so: 

𝜎 = 𝐸𝜀 

 

This is the required stress-strain relationship mentioned above. 

 

Rearranging for 𝜀 and substituting this into equation (4): 

 𝑅 =
𝐸𝑦
𝜎

 (5) 

 

Substituting values for 𝑦 and 𝜎, from within the elastic region, into this equation, allows for 𝑅 to be calculated. A 
convenient value of 𝑦 to use is 𝑎 (which is the outermost point of the elastic region), for which the corresponding 
value of 𝜎 is 𝜎!. Therefore: 

𝑅 =
𝐸𝑎
𝜎)

 

 

As plasticity has occurred within the beam during loading, on unloading the stress distribution and radius of curvature 
will not return to zero. Rather a residual stress distribution and residual radius of curvature will remain. If we assume 
that the stress change which occurs on unloading is purely elastic, then the stress change, Δ𝜎, can be calculated from 
equation (1) as: 

Δ𝜎 =
Δ𝑀𝑦
𝐼

 

 

The maximum stress change, Δ𝜎+",, will therefore occur at 𝑦+",, and so: 

Δ𝜎+", =
Δ𝑀 × 𝑦+",

𝐼
=
−𝑀 ×±𝑑 27

𝐼
 

where the change in bending moment on unloading, Δ𝑀, is −𝑀 and 𝑦+", = ±𝑑 27 . 

 

Therefore, at 𝑦 = 𝑑
27  (top edge): 

Δ𝜎-).$ %& / =
−𝑀𝑑
2𝐼

 

and at 𝑦 = −𝑑 27  (bottom edge): 

Δ𝜎-).'$ %& / =
𝑀𝑑
2𝐼
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As the unloading behaviour has been assumed to be elastic, the stress variation between these two values, relating to 
the top and bottom edges, will be linear, as shown by the unloading part of Figure 13. 

 

 

Figure 13 

 

Figure 13 also shows that by summing the loaded stress distribution on the cross-section with the stress change which 
occurs on unloading, the residual stress distribution can be obtained. 

 

It is clear that the residual stresses are well below the yield stress, so reverse yielding does not occur, and therefore 
the elastic unloading assumption made, is correct. 

 

This residual stress distribution will be accompanied by a residual radius of curvature, which can be calculated by 
substituting unloaded beam values for 𝑦 and 𝜎 into equation (5), which again relate to a position that has only been 
subjected to elastic behaviour. As before (under loaded conditions), a convenient value of 𝑦 to use is 𝑎 (which is the 
outermost point of the elastic region), for which the corresponding value of 𝜎 can be taken from the residual stress 
distribution given in Figure 13 and is shown labelled as 𝜎0!  (i.e., the residual stress, 𝜎0, at position 𝑎). 

 

On releasing the moment, the radius of curvature increases. This change of curvature is called 'spring back' and is 
particularly important when bending beams to specified radii of curvature.  

 

4. Worked Example – Elastic-Perfectly Plastic I-Beam Subjected to a Pure Bending Moment 

Problem 

Figure 14 shows the cross-section of a straight I-beam which is subjected to a pure bending moment, 𝑀.  
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Figure 14 

 

Calculate: 

a. the maximum allowable value of 𝑀 if the web of the section is not to be subjected to any plasticity.   
b. the stress distribution and radius of curvature upon the application of 𝑀 
c. the stress distribution and radius of curvature upon unloading 

 

The material can be assumed to be elastic-perfectly-plastic with a yield stress, 𝜎) = 215	MPa, and Young’s Modulus, 
𝐸 = 200	GPa. 

 

Solution 

As it is known that the full depths of each flange are allowed to yield, but the web is to remain fully elastic, the resulting 
stress distribution due to the application of the maximum allowable bending moment, 𝑀, is as shown in Figure 15. 

 

 

Figure 15 

 

Moment Equilibrium 

Balancing the moments due to stresses in the elastic and plastic regions with the applied moment: 
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𝑀 = . 𝑦𝜎𝑑𝐴
#

 

= . 𝑦𝜎𝑏d𝑦

$
%&

'$ %&

 

 

Due to the symmetry of the stress distribution magnitude about the neutral axis and substituting in the elastic and 
plastic terms for 𝜎, this can be rewritten as: 

𝑀 = 2L.𝑦 8𝜎!
𝑦
𝑎
9 𝑏1d𝑦

*

(

+ . 𝑦𝜎!𝑏2d𝑦

$
%&

*

M 

= 2𝜎!L
𝑏1
𝑎
. 𝑦%d𝑦
*

(

+ 𝑏2 . 𝑦d𝑦

$
%&

*

M 

where 𝑏1 and 𝑏2 are the widths of the web and flange sections of the beam, respectively, and 𝑎 is the value of 𝑦 
where the cross-section transitions from the web to the flange. 

 

Therefore,  

𝑀 = 2𝜎! N
𝑏1
𝑎
O
𝑦3

3
Q
(

*

+ 𝑏2 O
𝑦%

2
Q
*

$
%&

R 

= 2𝜎! S𝑏1
𝑎%

3
+ 𝑏2 ;

𝑑%

8
−
𝑎%

2
>T 

∴ 𝑴 = 𝟑𝟔, 𝟑𝟑𝟓, 𝟎𝟎𝟎	𝐍𝐦𝐦 = 𝟑𝟔. 𝟑𝟒	𝐤𝐍𝐦 

 

Compatibility 

As the region of the cross-section between −𝑎 < 𝑦 < 𝑎 has only behaved elastically, the elastic beam bending 
equation can be applied and rearranged to give: 

𝑅 =
𝑦
𝜀

 

 

As the beam behaves as one body, this expression for 𝑅 can be applied to any value of 𝑦. 
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Stress-Strain Relationship 

Again, as the region of the cross-section between −𝑎 < 𝑦 < 𝑎 has only behaved elastically, Hooke’s law applies here, 
which can be substituted into the above expression for 𝑅 to give: 

𝑅 =
𝐸𝑦
𝜎

 

 

Substituting values for 𝑦 and 𝜎 from the outermost point of the elastic region gives: 

𝑅45"6 =
𝐸𝑎
𝜎)

 

∴ 𝑹𝐥𝐨𝐚𝐝 = 𝟐𝟕, 𝟗𝟎𝟔. 𝟗𝟖	𝐦𝐦 = 𝟐𝟕. 𝟗𝟏	𝐦 

 

Unloading 

Assuming that the stress change caused by unloading is purely elastic, then from the elastic beam bending equation: 

∆𝜎 =
∆𝑀 × 𝑦

𝐼
 

 

Therefore, at the top and bottom edges: 

Δ𝜎-).$ %& / =
−𝑀 × 𝑑 27

𝐼
=
−𝑀𝑑
2𝐼

=
−36,335,000 × 100
2 × 6,803,333.33

= −267.04	MPa 

and  

Δ𝜎-).'$ %& / =
−𝑀 ×−𝑑 27

𝐼
=
𝑀𝑑
2𝐼

= 267.04	MPa 

 

Where: 

𝐼 = ;
𝑏𝑑3

12
>
;<=>?

− ;
𝑏𝑑3

12
>
@*AB

=
100 × 1003

12
− 2;

42.5 × 603

12
> = 8,333,333.33	mmC − 1,530,000	mmC 

= 6,803,333.33	mmC 

 

Since the unloading behaviour has been assumed to be elastic, the stress variation between these two values, relating 
to the top and bottom edges, will be linear, as shown in the unloading section of Figure 16.  
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Figure 16 

 

The equation of the linear unloading relationship is: 

 𝑦 = 𝑚𝜎 + 𝑐 (6) 

where, as the line passes through the origin: 

𝑐 = 0 

and the gradient, 𝑚, can be calculated by choosing a corresponding set of 𝑦 and 𝜎 values, e.g., those applicable to the 
top edge, i.e., 𝑦 = 50	mm and 𝜎 = −267.04	MPa and substituting these into equation (6) as: 

∴ 50 = 𝑚 ×−267.04 

∴ 𝑚 = −0.187 

 

This value for 𝑚 allows for the interpolation of the unloading stress distribution to determine the 𝜎 value at 𝑦 =
30	mm, from equation (6) as: 

30 = −0.187𝜎 

∴ 𝜎 = −160.43 

 

The loading and unloading stress distributions can now be summed together in order to determine the residual stress 
distribution as follows. 

At 𝑦 = 50	mm: 

𝜎?"# = 𝜎45"6"# + 𝜎DE45"6"# = 215	MPa − 267.04	MPa = −52.04	MPa 

At 𝑦 = 30	mm: 

𝜎?$# = 𝜎45"6$# + 𝜎DE45"6$# = 215	MPa − 160.43	MPa = 54.57	MPa 

At 𝑦 = 0	mm: 

𝜎?# = 𝜎45"6# + 𝜎DE45"6# = 0	MPa − 0	MPa = 0	MPa 
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At 𝑦 = −30	mm: 

𝜎?%$# = 𝜎45"6%$# + 𝜎DE45"6%$# = −215	MPa + 160.43	MPa = −54.57	MPa 

At 𝑦 = −50	mm: 

𝜎?%"# = 𝜎45"6%"# + 𝜎DE45"6%"# = −215	MPa + 267.04	MPa = 52.04	MPa 

 

The residual section of Figure 16 shows this in graphical form. 

 

As the residual stresses are well below the yield stress (±215 MPa), reverse yielding will not occur, and therefore the 
elastic unloading assumption made, is correct.  

 

This residual stress distribution will be accompanied by a residual radius of curvature, which can be calculated by 
substituting unloaded beam values for 𝑦 and 𝜎 into the same equation as above for the loaded equivalent, which again 
relate to a position that has only been subjected to elastic behaviour. As before (under loaded conditions), a 
convenient value of 𝑦 to use is 𝑎 = 30	mm (which is the outermost point of the elastic region), for which the 
corresponding value of 𝜎 can be seen, from Figure 16, to be 54.57 MPa. I.e.: 

𝑅DE45"6 =
𝐸𝑎
𝜎0!

 

∴ 𝑹𝐮𝐧𝐥𝐨𝐚𝐝 = 𝟏𝟎𝟗, 𝟗𝟓𝟎. 𝟓𝟐	𝐦𝐦 = 𝟏𝟎𝟗. 𝟗𝟓	𝐦 

 

5. Elastic-Plastic Torsion of Shafts  

Figure 17a shows a shaft which is subjected to a torque, 𝑇. The circular cross-sectional area of the shaft is shown in 
Figure 17b. 

 

 

Figure 17 

 

Assuming that the magnitude of the torque is not high enough to cause plasticity (yielding) within the shaft, the elastic 
shaft torsion equation can be used to describe the shear stress distribution, as a function of 𝑟 (radius of the shaft), as: 

 𝜏 =
𝑇𝑟
𝐽

 (7) 

(a) (b)
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!
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In this elastic case then, the shear stress distribution, as a function of 𝑟, throughout the cross-section is linear, as 
shown in Figure 18. 

 

 

Figure 18 

 

If the torque is increased to a magnitude which is just high enough to induce plasticity in the shaft, this plasticity will 
occur at the positions furthest away from the centre of the cross-section, i.e., at the positions of maximum 𝑟 
magnitude (circumference of the cross-section). As the torque is further increased, the plasticity spreads from the 
outer edge, to further within the cross-section (towards the centre) as shown in Figure 19. As can be seen from Figure 
19, the material behaviour demonstrated is elastic perfectly-plastic, as once the material has yielded, at 𝑟 > 𝑎, no 
further increase in stress magnitude is observed. 

 

 

Figure 19 

 

Torque equilibrium can be used to relate the applied torsion, 𝑇, to the position as which yielding occurs, 𝑎, as: 

 𝑇 = . 𝑟𝜏𝑑𝐴
#

 (8) 

 

Equation (8) shows that the sum of the torques caused as a result of the shear stress, 𝜏, in each unit of area, d𝐴, in the 
cross-section, must be equal to the applied torque, 𝑇. This can be seen in the right-hand side of the above equation 
as shear stress, 𝜏, multiplied by area, 𝐴, gives units of force, and force multiplied by perpendicular distance, 𝑟, gives 
torque. 

 

Equation (8) can be rewritten as: 

!

"

!

"!!

"
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 𝑇 = 2𝜋. 𝜏𝑟%d𝑟
H

(

 (9) 

where 𝑅 is the outer radius of the cross-section, and: 

d𝐴 = 2𝜋𝑟d𝑟 

 

Substituting the expressions for shear stress for each of the elastic (0 > 𝑟 > 𝑎) and plastic (𝑎 > 𝑟 > 𝑅) regions, i.e., 
𝜏)

?
*

 and 𝜏), respectively, into equation (9) gives: 

𝑇 = 2𝜋. 8𝜏)
𝑟
𝑎
9 𝑟%d𝑟

*

(

+ 2𝜋. 𝜏)𝑟%d𝑟
H

*
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In order for the twist, 𝜃, of the shaft, due to the applied torque, 𝑇, to be calculated, both compatibility and a shear 
stress-shear strain relationship are required. As the region of the cross-section between 0 < 𝑟 < 𝑎 has only behaved 
elastically, the elastic shaft torsion equation can be applied. I.e.: 

𝑇
𝐽
=
𝜏
𝑟
=
𝐺𝜃
𝐿

 

∴
𝑟𝜃
𝐿
= 𝛾 8=

𝜏
𝐺
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 ∴ 𝜃 =
𝛾𝐿
𝑟

 (10) 

where 𝛾 is the shear strain related to the shear stress 𝜏. 

 

As the shaft behaves as one body, the entirety of the shaft (both the elastic and plastic regions) must share this 
common twist, 𝜃. This is the compatibility requirement mentioned above.  

 

Again, as the region of the cross-section between 0 < 𝑟 < 𝑎 has only behaved elastically, Hooke’s law applies here, 
therefore: 

𝜏 = 𝐺𝛾 

 

This is the required shear stress-shear strain relationship mentioned above. Rearranging for 𝛾 and substituting this 
into equation (10): 

 𝜃 =
𝜏𝐿
𝐺𝑟

 (11) 
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Substituting values for 𝑟 and 𝜏, from within the elastic region, into this equation, allows for 𝜃 to be calculated. A 
convenient value of 𝑟 to use is 𝑎 (which is the outermost point of the elastic region), for which the corresponding value 
of 𝜏 is 𝜏!. Therefore: 

𝜃 =
𝜏)𝐿
𝐺𝑎

 

 

As plasticity has occurred within the shaft during loading, on unloading the shear stress distribution and twist will not 
return to zero. Rather a residual shear stress distribution and residual twist will remain. If we assume that the shear 
stress change which occurs on unloading is purely elastic, then the shear stress change, Δ𝜏, can be calculated from 
equation (7) as: 

Δ𝜏 =
Δ𝑇 × 𝑟
𝐽

 

 

The maximum shear stress change, Δ𝜏+",, will therefore occur at 𝑟+",, and so: 

Δ𝜏+", =
Δ𝑇 × 𝑟+",

𝐽
=
−𝑇𝑅
𝐽

 

where the change in torque on unloading, Δ𝑇, is −𝑇 and 𝑟+", = 𝑅. 

 

As the unloading behaviour has been assumed to be elastic, the shear stress variation through the cross-section will 
be linear, as shown by the unloading part of Figure 20. 

 

 

Figure 20 

 

Figure 20 also shows that by summing the loaded shear stress distribution on the cross-section with the shear stress 
change which occurs on unloading, the residual shear stress distribution can be obtained. 

 

It is clear that the residual shear stresses are well below the yield shear stress, so reverse yielding does not occur, and 
therefore the elastic unloading assumption made, is correct. 
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This residual shear stress distribution will be accompanied by a residual shaft twist, which can be calculated by 
substituting unloaded beam values for 𝑟 and 𝜏 into equation (11), which again relate to a position that has only been 
subjected to elastic behaviour. As before (under loaded conditions), a convenient value of 𝑟 to use is 𝑎 (which is the 
outermost point of the elastic region), for which the corresponding value of 𝜏 can be taken from the residual shear 
stress distribution given in Figure 20 and is shown labelled as 𝜏0!  (i.e., the residual shear stress, 𝜏0, at position 𝑎). 


